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Abstract

The carbon-based nanomaterial graphene can be chemically modified to associate with various molecules such as
chemicals and biomolecules and developed as novel carriers for drug and gene delivery. In this study, a nonviral
gene transfection reagent was produced by functionalizing graphene oxide (GO) with a polycationic polymer,
polyethylenimine (PEI), to increase the biocompatibility of GO and to transfect small interfering RNA (siRNA) against
C-X-C chemokine receptor type 4 (CXCR4), a biomarker associated with cancer metastasis, into invasive breast
cancer cells. PEI-functionalized GO (PEI-GO) was a homogeneous aqueous solution that remained in suspension
during storage at 4 °C for at least 6 months. The particle size of PEI-GO was 172 ± 4.58 and 188 ± 5.00 nm at 4 and
25 °C, respectively, and increased slightly to 262 ± 17.6 nm at 37 °C, but remained unaltered with time. Binding
affinity of PEI-GO toward siRNA was assessed by electrophoretic mobility shift assay (EMSA), in which PEI-GO and
siRNA were completely associated at a PEI-GO:siRNA weight ratio of 2:1 and above. The invasive breast cancer cell
line, MDA-MB-231, was transfected with PEI-GO in complex with siRNAs against CXCR4 (siCXCR4). Suppression of
the mRNA and protein expression of CXCR4 by the PEI-GO/siCXCR4 complex was confirmed by real-time PCR and
western blot analysis. In addition, the metastatic potential of MDA-MB-231 cells was attenuated by the PEI-GO/
siCXCR4 complex as demonstrated in wound healing assay. Our results suggest that PEI-GO is effective in the
delivery of siRNA and may contribute to targeted gene therapy to suppress cancer metastasis.
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Background
Graphene oxide (GO) is a carbon-based nanomaterial
with a single layer of carbon molecules covalently
linked to oxidized functional groups such as carboxyl
(–COOH) and hydroxyl (–OH) groups, which can be
chemically modified to increase its biocompatibility in
order to associate with drugs and biomolecules [1].
Functionalized graphene oxide has been considered

nanocarriers for drug delivery [2–4], gene delivery [5–8],
combined delivery of drug and gene for cancer therapy
[9–12], as well as protein transportation [13–15]. It has
also been applied in biosensing [16, 17], bioimaging
[18, 19], and tissue engineering [20, 21].
Polyethylenimine (PEI), a polycationic polymer that

attracts nucleic acids through electrostatic interaction, is
commonly used in the functionalization of nanomater-
ials for gene delivery. PEI-functionalized GO (PEI-GO)
successfully delivered both small interfering RNA
(siRNA) and anticancer drugs to enhance chemothera-
peutic effect in cancer cells [9]. A noncovalent PEI-GO
complex was reported to enhance GFP plasmid expres-
sion in HeLa cells [22]. By exploiting the near-infrared
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(NIR) optical absorbance of GO, photothermally con-
trolled delivery of siRNA and plasmid DNA by GO
functionalized with both PEI and polyethylene glycol
(PEG) was achieved [23, 24].
Chemokine (C-X-C motif ) receptor 4 (CXCR4), which

is a class-A G protein-coupled receptor (GPCR), has
been considered a biomarker for cancer metastasis and
poor prognosis [25, 26]. Suppression of CXCR4 and its
signaling axis is therefore a common strategy to inhibit
cancer cell migration and metastasis [27–30]. Drug and
gene delivery systems based on nanomaterials are thus
designed to target against CXCR4 and facilitate cancer
therapy and imaging. Anti-CXCR4 monoclonal antibody
conjugated to superparamagnetic nanoparticles was ap-
plied in molecular imaging of pancreatic cancer cell lines
[31]. PEG-functionalized carbon nanotube and cationic
dextran-based nanoparticles were reported to deliver
siRNA against CXCR4 into primary cells and animal
model for colorectal cancer [32, 33]. Peptide ligands and
peptide dendrimers against CXCR4 were used alone or
in conjugation with nanoparticles to deliver anticancer
drugs, inhibit tumor metastasis, and enhance molecular
imaging [34–37]. In addition, synthetic polycationic
viologen dendrimers (VGD) targeting CXCR4 were also
developed to facilitate targeted delivery of plasmid
DNAs and cancer therapy [38].
In this study, we explored the potential of PEI-GO in

the transfection of siRNAs against CXCR4 (siCXCR4)
to suppress the migration of MDA-MB-231 cells, a
metastatic cancer cell line overexpressing CXCR4.
Transfection efficiency was evaluated by the level of

suppression of CXCR4 mRNA, as well as the migration
ability of MDA-MB-231, and was compared to a com-
mercial transfection reagent, Lipofectamine 2000. Our
results suggest that PEI-GO is a potentially efficient
nonviral transfection reagent that may contribute to
targeted cancer therapy.

Methods
PEI Functionalization of Graphene Oxide
Graphene oxide (GO, Sigma-Aldrich, St. Louis, MO,
USA) was activated with (1-ethyl-3-(3-dimethyl-amino-
propyl) carbodiimide (EDC) and linked to PEI (branched,
average MW~25,000 by LS, average Mn~10,000 by GPC,
Sigma-Aldrich, St. Louis, MO, USA) through the forma-
tion of amide bonds (–CONH–) using methods reported
in the literature [9]. To remove unbound PEI, the reac-
tion product was washed with ddH2O and centrifuged
repeatedly at 3,000 rpm for 15–30 min in an Amicon
Ultra-15 Centrifugal Filter Unit (Millipore, Billerica, MA,
USA) with a molecular weight cut-off of 100 kDa. The
flow-through was subjected to ninhydrin assay to deter-
mine the level of free PEI.

Ninhydrin Assay
During washing of PEI-GO, 1 ml of flow-through from
the Amicon Ultra-15 Centrifugal Filter Unit was mixed
with 200 μl of 2 % (w/v) ninhydrin solution, followed by
reaction in a boiling water bath for 3 min. Ninhydrin re-
acts with the primary and secondary amines of free PEI
to produce Ruhemann’s purple, which was gradually de-
creased with successive washing. PEI-GO was considered

Fig. 1 Transmission electron microscopy images of pristine GO and PEI-GO. The surface morphology of pristine GO (a, b) was compared with that
of PEI-GO (c, d) by a JEOL 2000FX TEM at different scales
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free of unreacted PEI when the color of Ruhemann’s
purple was undetectable by the naked eye.

Characterization of PEI-GO
The difference in morphology between pristine GO and
PEI-GO was examined by transmission electron micros-
copy (JEOL 2000FX TEM) and scanning electron mi-
croscopy (JSM-6500F SEM). The particle size and zeta
potential of PEI-GO were determined by dynamic light
scattering using Zetasizer Nano ZS system (Malvern
Instruments, Worcestershire, UK).

Electrophoretic Mobility Shift Assay (EMSA)
Dharmacon siGENOME GAPD Control siRNA (Thermo
Fisher Scientific, Waltham, MA, USA) was used in EMSA
to analyze the binding capacity of PEI-GO. The PEI-
GO:siRNA complex was formed by incubating 0–0.6 μg
of PEI-GO with 0.2 μg siRNA at various mass ratios in

serum-free cell culture medium for 20 min at room
temperature. The complex was then mixed with SYBR
Green I and resolved by 1 % agarose gel as described
previously [39].

Cell Culture
Human breast carcinoma cell line MDA-MB-231 was
cultured at 37 °C in the absence of CO2 in Leibovitz’s L-
15 medium (Gibco, Life Technologies, Carlsbad, CA,
USA) supplemented with 10 % fetal bovine serum (FBS),
50 units/ml penicillin, and 50 μg/ml streptomycin. The
medium was refreshed every 3–4 days, and confluent
cells were subcultured 7 days after seeding. Cells were
seeded at 5000 cells/well in 96-well plates for cell viabi-
lity assay, at 105 cells/well in 6-well plates for total RNA
extraction, and at 2 × 104 cells/well in 24-well plates for
wound healing assay.

Fig. 2 Scanning electron microscopy images of pristine GO and PEI-GO. The surface morphology of pristine GO (a, c, e) was compared with that
of PEI-GO (b, d, f) by a JSM-6500 F SEM at different scales
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Cell Viability Assay
MDA-MB-231 cells were treated with 0–20 μg/ml
PEI-GO for 48 h, followed by WST-1 assay using
Quick Cell Proliferation Colorimetric Assay Kit (Bio-
Vision, Milpitas, CA, USA). Cell viability was quanti-
tated spectrophotometrically by measuring the optical
density at 450 nm, with a reference wavelength of
650 nm.

siRNA Transfection with PEI-GO
MDA-MB-231 cells were treated with Dharmacon
siGENOME siRNA specific for human CXCR4 (siCXCR4)
or siGENOME GAPD Control siRNA (siMOCK). The
siRNA was delivered either by Lipofectamine 2000 (Life
Technologies, Carlsbad, CA, USA) according to manufac-
turer’s instructions or by PEI-GO. PEI-GO was incubated
with siCXCR4 at mass ratios of 0.3:1, 0.5:1, and 1:1 for
20 min at room temperature before cultured with MDA-
MB-231 cells to achieve a final siCXCR4 concentration of

25 nM. Two days after siRNA transfection, cells were har-
vested for RNA extraction and real-time PCR analysis or
subjected to wound healing assay.

Real-Time Polymerase Chain Reaction
Total RNA was isolated by PureLink® RNA Mini Kit
(Thermo Fisher Scientific, Waltham, MA, USA), and cDNA
synthesis was carried out using the SuperScript III First-
Strand Synthesis SuperMix for qRT-PCR (Life Technologies,
Carlsbad, CA, USA) according to the manufacturer’s in-
structions. The cDNA was diluted to a final concentration
of ~1 ng/μl and reacted with CXCR4 (NM_003467)- or
GAPDH (NM_002046.4)-specific primer pairs and Quanti-
Fast SYBR® Green PCR Kit (QIAGEN, Germantown, MD,
USA). PCR was performed by Applied Biosystems 7300
Real-Time PCR System and monitored with Applied Biosys-
tems Sequence Detection Software V1.2 (Life Technologies,
Carlsbad, CA, USA) as described previously [40].

Wound Healing Assay
Wound healing assay was performed by following the
protocol provided in the literature [41]. MDA-MB-231
cells were cultured in a 24-well plate and treated with
siCXCR4 or siMOCK complexed with either PEI-GO or
Lipofectamine 2000 for 48 h. The cell monolayer in each
well was scraped with a p200 pipet tip to create a gap.
After washing with culture medium to remove cell
debris, the cells were allowed to migrate for 24 h, fol-
lowed by observation under an Olympus CKX41 optical
microscope.

Statistical Analysis
Statistical analysis was performed on data from at
least three independent experiments. Significant dif-
ference relative to the control was tested using Stu-
dent’s t test. Levels of significance of p < 0.05 and
0.01 were accepted as significant and highly signifi-
cant, respectively.

Fig. 3 Average particle size and zeta potential of PEI-GO analyzed by
dynamic light scattering. a The average particle diameter of 1 mg/ml
PEI-GO was compared at 4, 25, and 37 °C. b The zeta potential of
1 mg/ml PEI-GO was compared to that off pristine GO at 25 °C and
neutral pH. Error bars represent standard deviations (n≥ 3)

Fig. 4 Binding capacity of PEI-GO toward siRNA. PEI-GO was reacted with Dharmacon siGENOME GAPD control siRNA at various mass ratios, followed
by electrophoretic mobility shift assay (EMSA)
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Results
Characterization of PEI-GO
PEI functionalization increased the hydrophilicity and
dispersibility of GO, which formed aggregates and pre-
cipitated in water prior to functionalization. The PEI-
GO suspension can be maintained for at least 10 months
without precipitation. As examined by transmission
electron microscopy and scanning electron microscopy,
pristine GO was tightly packed (Fig. 1a, b) and had a
relatively smooth surface (Fig. 2a, c, e). PEI functionali-
zation increased the surface area of PEI-GO, as well as
the spacing between graphene layers, which appeared
more extended (Fig. 1c, d) and was highly agglomerated,
indicating that the stacking of the graphene sheets was
disturbed (Fig. 2b, d, f ). The particle size of PEI-GO was
172 ± 4.58 and 188 ± 5.00 nm at 4 and 25 °C, respect-
ively, and increased slightly to 262 ± 17.6 nm at 37 °C
(Fig. 3a), suggesting that that PEI-GO may be partially
aggregated in cell culture. However, when the particle
size immediately after synthesis was compared to that
after stored at 4 °C for over 10 months, no significant
change was observed (data not shown). As shown in
Fig. 3b, the zeta potential of pristine GO was negative
(−30.2 ± 1.34 mV), while that of PEI-GO was positive
(27.4 ± 1.25 mV), indicating that PEI functionalization
increased the positive charge on the surface of GO and
contributed to the electrostatic repulsion that stabi-
lized the PEI-GO suspension.

Binding Capacity of PEI-GO to siRNA
Binding capacity of PEI-GO toward siRNA was assessed by
electrophoretic mobility shift assay (EMSA). PEI-GO was
complexed with siRNA at various mass ratios and resolved

with agarose gel electrophoresis (Fig. 4). Binding of siRNA
to PEI-GO resulted in reduced mobility of free siRNAs and
their availability for SYBR Green I intercalation. As the
amount of PEI-GO increased, more siRNAs were adsorbed,
resulting in decreased fluorescence signal of free siRNAs.
The migration of siRNA was completely inhibited when the
mass ratio of PEI-GO:siRNA was 2:1 and above.

Cytotoxicity of PEI-GO
The cytotoxicity of PEI-GO in MDA-MB-231 cells, a
invasive breast cancer cell line, was analyzed by WST-1
assay. After incubated with PEI-GO for 48 h, we
observed that the viability of MDA-MB-231 cells
decreased with increasing concentrations of PEI-GO
(Fig. 5). In the presence of 20 μg/ml PEI-GO, the num-
ber of viable cells reduced to 47.6 % of that of the con-
trol. The final concentration of PEI-GO in siRNA
transfection was therefore limited within the range
which had no significant effect on cell viability.

Suppression of CXCR4 by siCXCR4 Transfected with
PEI-GO
The transfection efficiency of PEI-GO compared to Lipo-
fectamine 2000 was demonstrated by delivering siCXCR4
into MDA-MB-231 cells. After siCXCR4 treatment for

Fig. 5 Cytotoxicity of PEI-GO in MDA-MB-231 cells. Human breast
carcinoma cells MDA-MB-231 were treated with 0–20 μg/ml of PEI-GO
for 48 h. Cell viability was determined by WST-1 assay and quantitated
spectrophotometrically by measuring the optical density at 450 nm,
with a reference wavelength of 650 nm. Error bars represent standard
deviations (n≥ 3). *p < 0.05 and **p < 0.01 compared to the control

Fig. 6 Relative CXCR4 mRNA expression of MDA-MB-231 cells
transfected with PEI-GO:siCXCR4 complexes. PEI-GO was incubated
with siCXCR4 at mass ratios of 0.3:1, 0.5:1, and 1:1 for 20 min at
room temperature before cultured with MDA-MB-231 cells to
achieve a final siCXCR4 concentration of 25 nM. Two days after
siRNA transfection, cells were harvested for RNA extraction and
real-time PCR analysis. Control, MDA-MB-231 cells cultured in
growth medium for 48 h; Lipofectamine, MDA-MB-231 cells
transfected with siCXCR4 using Lipofectamine 2000 as transfection
reagent; PEI-GO:siMOCK, MDA-MB-231 cells transfected with
PEI-GO:siMOCK at a mass ratio of 1:1. Error bars represent standard
deviations (n ≥ 3). *p < 0.05 and **p < 0.01 compared to the
control; ##p < 0.01 compared to Lipofectamine
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48 h, CXCR4 mRNA expression reduced significantly to
13 and 8 % of untreated control at PEI-GO:siCXCR4 mass
ratios of 0.5:1 and 1:1, respectively, but was nearly un-
affected at a PEI-GO:siCXCR4 ratio of 0.3:1, and in the
presence of siMOCK, a nonspecific siRNA control (Fig. 6).
Transfection efficiency of PEI-GO was comparable to that
of the Lipofectamine:siCXCR4 complex, which reduced
CXCR4 expression to 12 % of control. These results
suggest that at appropriate mass ratios, target-specific
and efficient transfection can be achieved by PEI-GO.

Effect of siCXCR4 Transfected by PEI-GO on Cell Migration
The effect of CXCR4 suppression on cell migration
was examined by wound healing assay. MDA-MB-231
cells transfected with siCXCR4 were allowed to mi-
grate in a cell-free gap created in the culture plate.
For untreated cells or those treated with siMOCK,
the gap was filled with migrated cells after 24 h
(Fig. 7a, c). When the mRNA expression of CXCR4
was suppressed by siCXCR4, fewer cells were present
in the gap, indicating that cell migration was retarded.
As shown in Fig. 7d–f, siCXCR4 delivered by PEI-GO
suppressed the migration of MDA-MB-231 cells at
PEI-GO:siCXCR4 ratios of 0.5:1 and 1:1, but the ef-
fect was insignificant when the PEI-GO:siCXCR4 ratio
was 0.3:1, consistent with the results of CXCR4 gene
expression (Fig. 6). In addition, the extent of migra-
tional suppression resulted from PEI-GO:siCXCR4 was
comparable to that of the Lipofectamine:siCXCR4 com-
plexes (Fig. 7g).

Discussion
With improved vector designs, recent clinical trials have
eliminated the safety concerns of gene therapy and dem-
onstrated remarkable therapeutic benefits in inherited

diseases of the blood and immune and nervous systems
[42]. Gene therapy is expected to become a new ap-
proach to the development of novel therapeutic strategies
beyond conventional methods. Although current stra-
tegies on clinical gene therapy are based predominantly
on viral vectors, nonviral transfection reagents provide
safer alternatives without potential side effects such as
immunogenicity and carcinogenesis that are associated
with viral transfection [43].
In this study, we demonstrated that PEI-GO is an

effective nonviral carrier for siRNA delivery and may po-
tentially be applied in targeted gene therapy to suppress
cancer metastasis. Interestingly, studies have shown that
pristine graphene or GO, as well as polyethylene glycol
(PEG)-modified GO (PEG-GO) inhibit breast cancer cell
migration through impairment of oxidative phosphory-
lation and mitochondrial respiration [44, 45]. In addition,
GO selectively targets and retards the clonal expansion
of multiple cancer stem cells [46]. These results indicate
that GO alone is capable of suppressing cancer metasta-
sis and tumor development. However, because a relatively
lower concentration of PEI-GO was used in this study
(0.3 μg/ml PEI-GO compared to 40 or 80 μg/ml PEG-
GO in the literature), inhibition of cell migration was not
observed when MDA-MB-231 cells were treated with
PEI-GO alone.

Conclusions
Our results indicate that PEI-GO is capable of deliv-
ering siCXCR4 to suppress gene expression and meta-
static potential of MDA-MB-231 cells. PEI-GO may
be developed as a novel nonviral transfection reagent
that contributes to targeted gene therapy to suppress
cancer metastasis.

Fig. 7 Wound healing assay of MDA-MB-231 cells transfected with PEI-GO:siCXCR4 complexes. MDA-MB-231 cells were allowed to migrate over a
cell-free gap (bordered by the pair of black lines) after treated with PEI-GO:siCXCR4 complexes of mass ratios 0.3:1 (d), 0.5:1 (e), and 1:1 (f) for
48 h. The results were compared with untreated cells (a) and those treated with Lipofectamine 2000:siCXCR4 (b) or PEI-GO:siMOCK (c). Migrated
cells per field from three independent experiments were quantitated as shown in the bar graph (g)
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